EXCERPT FROM
AGGREGATE RESOURCE
EVALUATION
NODWELL ESTATES
TOWNSHIP OF EAST GARAFRAXA,
DUFFERIN COUNTY

Prepared for:
The Estate of James Nodwell

Prepared by:
Stantec Consulting Ltd.
49 Frederick Street
Kitchener ON N2H 6M7

160900627
July 2010
August 18, 2010
File: 160900627/10

Estate of James Nodwell
30 Mill Street
Orangeville, Ontario, L9W 2M3

Attention: Mr. Stephen White

Dear Mr. White:

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by the Estate of James Nodwell to complete an aggregate resource evaluation of a 61 ha property located at 391090 Line 18 in East Garafraxa Township, Dufferin County, Ontario. The following letter presents a summary of the findings.

STUDY APPROACH

The overall objective of the aggregate resource evaluation is to provide an estimate of the extent and quality of aggregate located at the Estate of James Nodwell. To satisfy the overall study objective a comprehensive field program was completed. The field program included the following tasks:

- Completion of 21 test pits to a depth of approximately 6 m to spatially delineate aggregate;

- Installation of four (4) monitoring wells to determine the depth to water table and the approximate depth of aggregate across the property;

- Installation of a drive point piezometer to determine depth to water table at the creek and hydraulic gradients;

- Completion of a geodetic survey;

- Groundwater level monitoring; and

- Submission of six (6) aggregate samples for grain-size analysis and submission of two (2) aggregate samples for testing to determine the aggregate physical properties.

Test pit and monitoring well locations are presented in Figure 1. Test pit and monitoring well completion details, aggregate thickness, and water level measurements are presented in Table 1.

SITE SETTING

As shown in Figure 1, a farm house, barn and storage shed are located adjacent to 18th Line which represents the northeastern property boundary. The northern portion of the Site, adjacent to the Site buildings is a hummocky pasture where farm animals graze. A creek oriented in an east west direction
bisects the northwestern portion of the Site which is mainly forested. The remainder of the Site is cropped land.

As indicated in Skeleton Brumwell (2010)\(^1\) the Site is located within a sand and gravel resource of secondary significance as defined by the Ministry of Natural Resources. Sand and gravel resources of secondary significance are believed to contain significant amounts of sand and gravel that can support a commercial pit operation. As shown in Figure 2, there are three (3) licensed aggregate extraction operations adjacent to the western and southern boundaries of the Site (Skeleton Brumwell, 2010)\(^1\).

GEOLOGY

The Site is located within the western boundary of the Hillsburgh Sandhills physiographic region (Chapman & Putnam, 1984)\(^2\) (Figure 2). The Hillsburgh Sandhills region is characterized as rough topography with steep kame moraines and swampy valleys. As shown in Figure 2, the central and southern portions of the property are mapped as kame moraine, with the boundary between the kame moraine and spillway oriented parallel to the creek and about 200 m south of the creek. A review of quaternary geologic mapping in the area of the Site indicated that overburden at the Site likely comprises ice-contact stratified deposits of sand and gravel (Figure 3).

The Site topography was observed to be rolling, with an overall slope towards the creek located in the northwestern portion of the Site (Figure 2). The topographic high of the Site (~495 m AMSL) was associated with a ridge located along the southeastern Site boundary. The topographic low is located at the creek which is approximately 470 m AMSL.

The overburden encountered in the boreholes and test pits at the Site were observed to comprise primarily sand and gravel with pockets of fine to medium sand. Sand and Gravel was observed in every test pit completed on Site except for TP12 (sand), and the northern portions of the Site at TP15, TP19, and TP21. In the southern portion of the Site, which also represents the topographic high, the sand and gravel unit is found at surface below a thin layer of topsoil. The sand and gravel unit is found at greater depth towards the northwest, commonly underlying units of clayey silty sand, and/or sandy silt. Four boreholes were drilled to aid in delineating the depth of the sand and gravel unit. The base of the sand and gravel unit was not encountered at monitoring wells MW1-10, and MW2-10 which were drilled to a minimum depth of 15 m below ground surface. At MW3-10 and MW4-10 the base of the sand and gravel unit was observed at depths of 15.54 m BGS (465.64 m AMSL) and 10.67 m BGS (470.25 m AMSL), respectively. At MW4-10 medium to coarse grained sand was observed below the sand and gravel unit, extending to 15.85 m BGS (465.07 m AMSL) before grading into silty sand and sandy silt.

An overlying sandy clayey silt unit was observed at ground surface along the base of the ridge located along the southeastern property boundary (TP5, TP6, TP7, and MW1-10) and within the northwestern portion of the Site adjacent to the creek (TP14, TP15, TP16, and MW3-10). Pockets of clean, fine to medium grained sand ranging in thickness from 1.52 m to 3.05 m were observed along the northern portion of the Site (TP1, TP2, TP7, TP9, TP14, TP15, TP16, and TP21). An additional isolated unit of sand was observed along the entire depth of TP12 (6.10 m), located in the southwestern portion of the Site. Silt content generally increased in the northern portions of the Site at (TP14, TP19, TP20, and TP21).

Table 1 presents the observed and estimated aggregate thickness at each test pit and monitoring well location. The observed aggregate thickness is defined as sand and gravel unit and/or sand unit cumulative thickness at each location. A greater than symbol is used where test pits or monitoring wells terminated in a sand and gravel unit or sand unit. The interpreted aggregate thickness was estimated using a terminal aggregate elevation of 467.95 m AMSL, which is the average of the bottom depth of the sand and gravel unit encountered at MW3-10 (465.65 m AMSL) and MW4-10 (470.25 m AMSL). In cases where the sand and gravel extended beyond the maximum depth of investigation (i.e., many of the test pits and monitoring wells MW1-10 and MW2-10) an average terminal depth of 467.95 m AMSL was assumed. The interpreted aggregate thickness across the property ranged from 6.05 m to 26.12 m, except at TP19 where there was no clean aggregate encountered as the hole comprised of silty sand. The average thickness of aggregate across the 61 ha property was 13.8 m.

HYDROGEOLOGY
The hydrogeology of the Site was assessed in terms of groundwater flow direction and horizontal and vertical hydraulic gradients.

Water level measurements were completed on April 22, 2010 at monitoring wells MW1-10, MW2-10, MW3-10, MW4-10, and DP1-10. The water table, ranged from 471.27 m to 473.86 m AMSL and this likely represents a high groundwater table condition, which typically occurs in the spring time of year. The interpreted overburden groundwater flow direction was in an overall northern direction. A horizontal hydraulic gradient of 0.003 m/m was calculated.

Water levels measured at the creek and DP1-10 indicated an upward vertical hydraulic gradient of 0.029 m/m. The producer who works the field indicated that the creek dries up in summer. Therefore it is expected that the upward vertical hydraulic gradient in the creek is representative of spring freshet conditions and that the creek reverts to a groundwater recharge feature in the dryer months when groundwater levels are lower.

AGGREGATE QUALITY
The use of construction aggregates can generally be broken into three categories: asphalt paving mixes, portland cement concrete, or as a granular fill material.

The gradation was determined for all six samples submitted and results, compared to OPSS requirements for granular materials. The results indicated that with some processing (crushing/screening) and mixing the materials can meet the requirements for each of the granular types noted, including Granular A, Granular B (Type 1 and Type 2) and select sub-grade material (SSM).

Basic physical tests were carried out on two of the samples submitted (TP3 and MW2-10). Comments are as follows:

- Both samples meet the CSA/OPSS requirements for asphalt aggregates except that the coarse and fine Micro-Deval for Sample TP3 does not meet the requirement for some asphalt mix types;
- Both samples meet the CSA/OPSS requirements for concrete except the coarse Micro-Deval for Sample TP3 indicates it cannot be used for concrete subject to freeze-thaw cycles; and
- Both aggregates meet the physical properties for granular materials.
Based on the above, the aggregate is an excellent source of granular material. Preliminary testing indicates that the material has good potential for asphalt paving mixes and portland cement concrete; however, additional testing would be required to determine suitability once the material is processed and the applicable gradation is achieved.

CONCLUSIONS
Based on the aggregate resource evaluation, the following conclusions are presented:

- The interpreted aggregate thickness at the site ranged from 6.05 m to 26.12 m, except at TP19 where there was no clean aggregate encountered as the hole comprised of silty sand. The average thickness of aggregate across the 61 ha property was 13.8 m;

- Approximately half the aggregate located at the Site is above the water table; and

- Quality testing indicates that the aggregate is an excellent source of granular material. Preliminary testing indicates that the material has good potential for asphalt paving mixes and portland cement concrete; however, additional testing will be required to determine suitability once the material is processed and the applicable gradation is achieved.

LIMITATIONS
In conducting this aggregate resource evaluation, Stantec confirms that it had access to the experience and capability necessary to perform and did perform in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this assessment has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of environmental conditions associated with the identified property at the time the assessments were conducted and are based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the identified property at the time the assessments and/or investigations were conducted. Activities at the property subsequent to Stantec’s assessment may have significantly altered the property’s condition. Conclusions made within this report are a professional opinion at the time of the writing of this report, not a certification of the property’s environmental condition. This report is not a legal opinion regarding compliance with applicable laws.

This report has been prepared for the exclusive use of the client identified herein and any use by any third party is prohibited. Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from third party use of this report.

The locations of any utilities illustrated in this report, if any, including pole lines, conduits, water mains, sewers and other surface or sub-surface utilities and structures are not necessarily as described in this report or its appendices, and where shown or described, the accuracy of the position of such utilities and structures is not
August 18, 2010
Mr. Stephen White
Page 5 of 6

...guaranteed. Before starting work, any individual should confirm the exact location of all such utilities and structures and assume all liability for damage to them.

If Stantec’s services include the collection of samples, it should be noted that there are limitations that are inherent in any intrusive work of this nature. Conditions may vary between sample locations and the parameters tested for may be limited by factors such as the areas of greatest risk identified in any previous site assessment, the site conditions (e.g. utility placements) and cost factors. Accordingly, no representations can be made regarding parameters for which tests were not performed. A potential remains for the presence of unknown, unidentified, or unforeseen surface and subsurface environmental conditions.

All of which is respectfully submitted,

STANTEC CONSULTING LTD.

Michelle Fraser, M.Sc, P.Geo.
Hydrogeologist
Roger Freymond, P.Eng.
Senior Hydrogeologist

Attachment: Figure 1 Site Plan
Figure 2 Physiography
Figure 3 Surficial Geology
Table 1 Test Pit and Monitoring Well Completion Details

Dalen Fairbairn
Transmittal

Stantec Consulting Ltd.
49 Frederick Street
Kitchener, Ontario
N2H 6M7

To: Whom it may concern
Company:
Address:
Phone:
Date: January 24, 2011
File: 160900627/10
Delivery: Courier

From: Stantec Consulting Ltd.
☐ For Your Information
☐ For Your Approval
☐ For Your Review
☐ As Requested

Reference: Aggregate Resource Evaluation – Selected Pages

Attachment:

<table>
<thead>
<tr>
<th>Copies</th>
<th>Doc Date</th>
<th>Pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>July 2010</td>
<td></td>
<td>Selected pages from – Aggregate Resource Evaluation, Nodwell Estates, Township of East Garafraxa, Dufferin County</td>
</tr>
</tbody>
</table>

Stantec Consulting Ltd. (Stantec) was retained by the Estate of James Nodwell to complete an aggregate resource evaluation of a 61 ha property located at 391090 Line 18 in East Garafraxa Township, Dufferin County, Ontario. At the request of the Estate of James Nodwell, attached is a data package containing all of the information Stantec collected to determine the quality and quantity of aggregate on the property. Also provided are the methodologies used in collecting the data and a general discussion of the geology and hydrogeology for the site.

STANTEC CONSULTING LTD.

[Signature]

Michelle Fraser
Hydrogeologist
Tel: 519-585-7421
Fax: 516-579-4239
michelle.fraser@stantec.com

c. Dalen Fairbairn

One Team. Infinite Solutions.
2.0 Methodology

In order to meet the study objectives, the following activities were completed:

- Complete 21 test pits to a depth of approximately 6 m to spatially delineate aggregate;
- Install four (4) monitoring wells to determine the depth to water table and the approximate depth of aggregate across the property;
- Installation of a drive point piezometer to determine depth to water table at the creek and hydraulic gradients;
- Undertake a geodetic survey;
- Groundwater level monitoring; and
- Six (6) aggregate samples were submitted for grain-size analysis and two (2) aggregate samples for testing to determine the aggregate physical properties;

2.1 TEST PIT EXCAVATION

Twenty-one (21) test pits were excavated to approximately 6 m below ground surface (BGS) within the study area between April 7, 2010 and April 8, 2010. The test pit locations are shown on Figure 1. Test pits were excavated using a track mounted excavator operated by a private contractor. During test pit excavation, composite soil samples were collected at 1.5 m intervals. Soil samples were placed into 4 L plastic bags and placed in a building located on site for storage. Observations were made of soil type, and grain size. The soil descriptions and stratigraphy are presented on the test pit logs in Appendix C. Upon completion, the test pits were backfilled in the reverse order to which the soil was removed in order to nominally preserve stratigraphy.

2.2 MONITORING WELL INSTALLATION AND DEVELOPMENT

Four monitoring wells, MW1-10, MW2-10, MW3-10, and MW4-10, were advanced using a CME75 track-mounted drill rig operated by All-Terrain Drilling Ltd. between April 12, 2010 and April 16, 2010. The monitoring well locations are presented on Figure 1. The boreholes were advanced to target depths ranging from 15.24 m to 18.29 m BGS using hollow-stem augers (HSA), which produced a borehole 250 mm in diameter. Potable water was used while drilling below the water table to prevent sand heaving up into the augers.

Soil samples were collected continuously during the advancement of each borehole using a 1.52 m long, 127 mm inside diameter (ID) CME continuous sampler with the HSA. The
recovered soil cores were logged in the field by Stantec personnel. Borehole logs are presented in Appendix C.

Following initial examination, a composite soil sample was collected from each 1.52 m interval and placed into a 4 L plastic bag. The samples were stored in a building on site until select samples were shipped to Stantec’s Burlington office for grain size analysis and physical properties analysis.

Following borehole advancement a monitoring well was installed. All monitoring wells were constructed using 50 mm ID Schedule 40 PVC well casing. The wells were constructed with No. 10 slot (0.01 inch slot) PVC well screens 3.04 m in length. The formation was allowed to naturally cave filling the annular space between the well and formation surrounding the screens. Where sufficient cave was not observed silica sand was added as backfill. Approximately 0.6 m of the annular space above the sand pack was filled with Holeplug™ with the remainder of the annular space filled with a grout to reduce the potential for a hydraulic connection between the ground surface and the monitoring well. Each well was completed with a lockable above ground protective steel casing. All monitoring wells constructed as part of this investigation were completed in accordance with Ontario Regulation (O.Reg.) 903. A copy of the Water Well Record for each well is included in Appendix C.

Following monitoring well installation the monitoring wells were developed by removing a minimum of ten well casing volumes of water on April 22, 2010. Monitoring well development removes the fine grained material from around the screened interval which allows water movement between the monitoring well and the aquifer, thus allowing a representative water level to be measured in the well.

Monitoring well installation details are summarized in Table 1 and presented on the borehole logs in Appendix C. Laboratory Certificates of Analysis are presented in Appendix D.

2.3 DRIVE POINT PIEZOMETER INSTALLATION

A drive point piezometer (DP1-10) was installed on April 14, 2010 within the stream located in the northern portion of the property to provide information on groundwater and surface water levels (Figure 1). The drive point piezometer consisted of a 19 mm diameter, 0.43 m long steel screen connected to 25 mm diameter galvanized steel risers. The drive point piezometer was installed by hand driving methods and the installation details are summarized in Table 1.

2.4 GEODETIC SURVEY

Ground surface and top of casing elevations and/or spatial coordinates at each monitoring well, drive point piezometer and test pit were measured using a total station GPS unit. Following completion, the accuracy of the survey was determined to be ±0.020 m.
2.5 GROUNDWATER LEVEL MONITORING

Manual water level measurements were collected at the four monitoring wells and one drive point piezometer on April 22, 2010. Manual measurements were collected using a battery operated probe and calibrated tape. Manual water depths were recorded in meters below the top of casing (m BTOC). Water level data are presented in Table 1.

2.6 LABORATORY ANALYSIS

To assess aggregate quality several composite soil samples were submitted to our Stantec Geotechnical Laboratory in Burlington, Ontario for analysis. The Stantec Geotechnical Laboratory is certified by the Canadian Council of Independent Laboratories (CCIL) as a Type C Aggregate Quality Control Laboratory and Type D Aggregate Physical Property Laboratory.

The samples were submitted for the following analysis:

- Six composite samples collected at MW1-10, MW2-10, TP3, TP4, TP9, and TP18 were submitted for grain size analysis. Composite samples for each test pit were created by mixing the entire material collected at each test pit (four 4L subsamples of material for one 12L composite sample at each test pit location). Composite samples for each monitoring well location were created by combining half of each discrete 4L sample collected within the sand and gravel unit to create one 12L composite sample;

- Following grain size analysis, the oversize material from composite samples collected at MW1-10 and TP3 were crushed to 19 mm size stone for additional testing. The additional testing included micro-deval for coarse and fine aggregate, freeze-thaw for coarse aggregate, petrographic analysis for coarse aggregate and bulk relative density and absorption for coarse and fine aggregate.

The results were compared to Ontario Provincial Standard Specification (OPSS) 1010 for granular material, OPSS 1002 for concrete aggregate and OPSS 1003 for hot mix asphalt aggregate. Laboratory Certificates of Analysis are presented in Appendix D.
3.0 Results

3.1 SITE SETTING

As shown in Figure 1, a farm house, barn and storage shed are located adjacent to 18th Line which represents the northeastern property boundary. The northern portion of the Site, adjacent to the Site buildings is a hummocky pasture where farm animals graze. A creek oriented in an east west direction bisects the northwestern portion of the Site which is mainly forested. The remainder of the Site is cropped land.

As indicated in Skeleton Brumwell (2010) the Site is located within a sand and gravel resource of secondary significance as defined by the Ministry of Natural Resources. Sand and gravel resources of secondary significance are believed to contain significant amounts of sand and gravel that can support a commercial pit operation. As shown in Figure 2, there are three (3) licensed aggregate extraction operations adjacent to the western and southern boundaries of the Site (Skeleton Brumwell, 2010)\(^1\).

3.2 GEOLOGY

The Site is located within the western boundary of the Hillsburgh Sandhills physiographic region (Chapman & Putnam, 1984) (Figure 2). The Hillsburgh Sandhills region is characterized as rough topography, with steep kame moraines and swampy valleys. As shown in Figure 2, the central and southern portions of the property are mapped as a kame moraine, with the boundary between the kame moraine and spillway oriented parallel to the creek and about 200 m south of the creek. A review of quaternary geologic mapping in the area of the Site indicated that overburden at the Site likely comprises ice-contact stratified deposits of sand and gravel (Figure 3).

The Site topography was observed to be rolling, with an overall slope towards the creek located in the northwestern portion of the Site (Figure 2). The topographic high of the Site (~495 m AMSL) was associated with a ridge located along the southeastern Site boundary. The topographic low is located at the creek which is approximately 470 m AMSL.

Five geologic cross-sections were constructed through the Site based on the test pit and borehole data (Figure 1). Cross Section A-A' (Figure 4) and B-B' (Figure 5) extend northwest to southeast along the Site crossing the creek. Cross-Sections C-C' (Figure 6), D-D' (Figure 7), and E-E' (Figure 8) extend southwest to northeast parallel to the creek at various distances along the Site boundary.

The overburden encountered in the boreholes and test pits at the Site were observed to comprise primarily sand and gravel with pockets of fine to medium sand. Sand and Gravel was observed in every test pit completed on Site except for TP12 (sand), and the northern portions of the Site at TP15, TP19, and TP21. In the southern portion of the Site, which also represents
the topographic high, the sand and gravel unit is found at surface below a thin layer of topsoil. As shown in cross-section A-A' (Figure 4) and B-B' (Figure 5) the sand and gravel unit is found at greater depth towards the northwest, commonly underlying units of clayey silty sand, and/or sandy silt. Four boreholes were drilled to aid in delineating the depth of the sand and gravel unit. The base of the sand and gravel unit was not encountered at monitoring wells MW1-10, and MW2-10 which were drilled to a minimum depth of 15 m below ground surface. At MW3-10 and MW4-10 the base of the sand and gravel unit was observed at depths of 15.54 m BGS (465.64 m AMSL) and 10.67 m BGS (470.25 m AMSL), respectively. At MW4-10 medium to coarse grained sand was observed below the sand and gravel unit, extending to 15.85 m BGS (465.07 m AMSL) before grading into silty sand and sandy silt.

An overlying sandy clayey silt unit was observed at ground surface along the base of the ridge located along the southeastern property boundary (TP5, TP6, TP7, and MW1-10) and within the northwestern portion of the Site adjacent to the creek (TP14, TP15, TP16, and MW3-10). Pockets of clean, fine to medium grained sand ranging in thickness from 1.52 m to 3.05 m were observed along the northern portion of the Site (TP1, TP2, TP7, TP9, TP14, TP15, TP16, and TP21). An additional isolated unit of sand was observed along the entire depth of TP12 (6.10 m), located in the southwestern portion of the Site. Silt content generally increased in the northern portions of the Site at (TP14, TP19, TP20, and TP21).

3.3 HYDROGEOLOGY

The hydrogeology of the Site was assessed in terms of groundwater flow direction, horizontal and vertical hydraulic gradients.

Water level measurements were completed on April 22, 2010 at monitoring wells MW'-10, MW2-10, MW3-10, MW4-10, and DP1-10. The water table, ranged from 471.27 m to 473.86 m AMSL and this likely represents a high groundwater table condition, which typically occurs in the spring time of year. Static water level elevations (presented in Table 1) were used in the interpretation of groundwater flow field. The interpreted overburden groundwater flow direction was in an overall northern direction. A horizontal hydraulic gradient of 0.003 m/m was calculated.

Water levels measured at the creek and DP1-10 indicated an upward vertical hydraulic gradient of 0.029 m/m. The producer who works the field indicated that the creek dries up in summer. Therefore it is expected that the upward vertical hydraulic gradient in the creek is representative of spring freshet conditions and that the creek reverts to a groundwater recharge feature in the dryer months when groundwater levels are lower.
5.0 LIMITATIONS

In conducting this aggregate resource evaluation, Stantec confirms that it had access to the experience and capability necessary to perform and did perform in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this assessment has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of environmental conditions associated with the identified property at the time the assessments were conducted and are based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the identified property at the time the assessments and/or investigations were conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Conclusions made within this report are a professional opinion at the time of the writing of this report, not a certification of the property's environmental condition. This report is not a legal opinion regarding compliance with applicable laws.

This report has been prepared for the exclusive use of the client identified herein and any use by any third party is prohibited. Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from third party use of this report.

The locations of any utilities illustrated in this report, if any, including pole lines, conduits, water mains, sewers and other surface or sub-surface utilities and structures are not necessarily as described in this report or its appendices, and where shown or described, the accuracy of the position of such utilities and structures is not guaranteed. Before starting work, any individual should confirm the exact location of all such utilities and structures and assume all liability for damage to them.

If Stantec's services include the collection of samples, it should be noted that there are limitations that are inherent in any intrusive work of this nature. Conditions may vary between sample locations and the parameters tested for may be limited by factors such as the areas of greatest risk identified in any previous site assessment, the site conditions (e.g. utility placements) and cost factors. Accordingly, no representations can be made regarding parameters for which tests were not performed. A potential remains for the presence of unknown, unidentified, or unforeseen surface and subsurface environmental conditions.
APPENDIX A

FIGURES
Legend
- Monitoring Well
- Drive-Point Pluviometer
- Test Pit
- NKKL WWR
- Topographic Contour (mAMSL)
- Site Boundary (Approx.)
- Sampling Grid
- Aggregate Licensed Area

Physiography
3. Spillways
4. Kame Moraines
6. Till Plains (Drumlinized)
- Physiographic Region Boundary

Notes

Stantec
Closed Project
Aggregate Resource Evaluation
Notwell Estates
Township of East Garafraxa, Dufferin County

Figure No.
2

Title
Physiography